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Abstract
Experiments carried out on the intermetallic superconducting material MgB2 have shown
anomalous magnetic field dependence of upper critical field, small angle neutron scattering
form factor, specific heat, critical current etc. Similarly, scanning tunnelling microscopy (STM)
experiments on vortex structures have shown unusually large vortex core size and two different
magnetic and spatial field scales. Also, whereas the specific heat measurements and isotope
shift experiments have shown Bardeen–Cooper–Schrieffer-like (BCS-like) behaviour, the
temperature dependences of the penetration depth experiments have shown non-BCS-like
behaviour. These anomalous behaviours have been attributed to the multiband
superconductivity of this material and the nature of the local spatial behaviour of the magnetic
induction and the order parameter components having two length scales. We report an
analytical investigation of the effect of two length scales on the temperature and the applied
magnetic field dependence of several properties of MgB2, such as, the penetration depth, single
vortex and vortex lattice structure, vortex core radius, reversible magnetization, critical current,
small angle neutron scattering form factor and the shear modulus of the vortex lattice within the
framework of two-order parameter Ginzburg–Landau theory. We solve the corresponding
nonlinear Ginzburg–Landau equations numerically exactly using an iterative method for
arbitrary applied field Hc1 < H < Hc2, the Ginzburg–Landau parameter and vortex lattice
symmetry. This enables us to compute the local spatial behaviour of the magnetic induction and
the order parameters accurately for arbitrary applied field and a wide range of temperature.
Comparison of the analytical results with experiments on MgB2 gives very good agreement.

1. Introduction

The recent discovery of superconducting properties in the
intermetallic compound MgB2 [1] has initiated a lot of
theoretical and experimental work to understand the various
properties associated with this material. What has set
this material apart from the existing genre of high-Tc

superconductors is its simple chemical composition and its
capacity to carry large critical current, while supporting a
large critical temperature of Tc = 39 K. It is inferred
from experimental studies [2, 3] that MgB2 is an example of
multiband superconductivity. Measurements of the B-isotope
effect on Tc [4] have shown that superconductivity in this
material is governed by strong electron–phonon coupling. The
concept of multiband superconductivity was introduced more

than 40 years ago [5] for materials with large disparity of the
electron–phonon interaction for different pieces of the Fermi
surface. Ab initio calculations [6] indicate that MgB2 is a metal
possessing a layered structure, with the boron atoms forming
honeycombed layers and the magnesium atoms being located
above the centre of the hexagons in between the boron planes.
The electronic states at the Fermi level, which are responsible
for the superconducting property in this material, are the σ and
π -bonding boron orbitals. Since the σ -bonding orbitals are
partially occupied for boron atoms, they couple very strongly
to the in-plane vibrations of the boron planes, giving rise to a
large energy gap of magnitude �σ ≈ 6.8 meV. It is this strong
electron–phonon pairing confined to the boron plane which
gives a major contribution to the superconducting property of
this material. Apart from this, a weak contribution is obtained
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from the π -bonding states present in the remaining parts of
the Fermi surface, which gives rise to a smaller energy gap of
magnitude �π ≈ 1.8 meV. The experimental efforts have led
to the consensus that in MgB2 the superconductivity is mainly
driven by the σ -band and its interband coupling with the π -
band induces a small superconductivity in the π -band [7, 8].

Experiments have demonstrated several new and inter-
esting properties associated with the two-band nature of this
material. It has been found that the anisotropy of the
upper critical magnetic field shows anomalous temperature
dependence [9] while the lower critical magnetic field is
almost isotropic, indicating that in MgB2 the coherence length
and penetration depth anisotropy � = ξab/ξc = λc/λab is
field dependent and rises from an isotropic value (� ≈ 1)
at the lower magnetic field to an anisotropic value (� ≈
5–6) at the higher magnetic field. Point contact [10] and
small angle neutron scattering (SANS) measurements [11]
have suggested that anomalous magnetic field dependence
contributes towards the anisotropic property of the material.
Above some cross-over magnetic field of H ≈ 0.1 [12] the
contribution of the π -band is suppressed by the magnetic field
and the anisotropy of the material is then governed by the
two-dimensional σ -bands. Below this cross-over magnetic
field the three-dimensional π -bands plays a dominant role in
determining not only the anisotropy but also other properties
of this material. The anomalous magnetic field dependence
of the contribution of the two bands has also been observed
in other experimentally observable properties. The kink
observed in the magnetic field dependence of the Sommerfeld
coefficient [13] arises due to the rapid suppression of the
contribution of the π -bands with increasing magnetic field.
Moreover, the form factors in small angle neutron scattering
(SANS) experiments [11], muon spin relaxation rate [14] and
the logarithmic derivative of the reversible magnetization [14],
which are all expected to be proportional to 1/λ2, show
anomalous magnetic field dependence. Recent scanning
tunnelling microscopy (STM) studies [15] have supported the
presence of two-order parameter components in the MgB2
superconductor.

The multiband scenario of the MgB2 superconductor has
also been modelled in theoretical studies. While some of
the microscopic theories were based on the σ or σ–π -band
scenarios for superconductivity [16, 17], others are based on
the π -band model of superconductivity [18]. Koshelev et al
[19] has studied the vortex state of MgB2 by solving the two-
band Usadel equations. Zhitomirsky et al [20] have studied
a two-band Ginzburg–Landau (GL) theory but the study is
restricted to the applied magnetic field regions near the upper
(Hc2) and lower (Hc1) critical magnetic fields (where the
nonlinear GL equations are approximated as linear) and hence
cannot describe the anomalous dependence of the properties
of MgB2 on the applied field. They have obtained the single
vortex and vortex lattice structure. Betouras et al [21] have
used the two-band GL theory to study the effect of pressure
on the MgB2 superconductor. In a recent paper, Klein et al
[22] showed that the anomalous applied field dependence of
the properties of MgB2 can be explained if one assumes that the
penetration depth and the coherence length are field dependent.

Another limitation of the earlier two-band GL theories is the
approximation of expressing one of the order parameters in
terms of the other, thereby reducing it to an effective one-order
parameter GL theory [22, 23].

In this paper we study the superconducting properties
of MgB2 superconductor in the framework of a two-order
parameter GL theory. We solve the coupled nonlinear GL
equations involving the two-order parameters and the magnetic
induction by a numerically exact iteration technique in two
spatial dimensions [24]. The justification for carrying out the
numerical computation in two-dimensions is due to the fact
that the superconductivity in MgB2 is principally governed by
the two-dimensional σ -bands. Experimental observations [12]
have suggested that up to an applied magnetic field of
H ≈ 0.1 T the two-dimensional σ -bands dominate the
superconducting properties of MgB2 and below this the
three-dimensional π -band tends to be predominant. Since
we are interested in studying the anomalous magnetic field
dependence on the properties of the MgB2 we need to study
the intermediate region of the applied magnetic field where
the GL equations are not linear. We therefore do not linearize
the coupled nonlinear GL equations. Also we have not used
any ansatz to express one of the order parameter components
in terms of the other. Thus, we solve the fully coupled
nonlinear GL equations over the entire range of the applied
magnetic field for arbitrary vortex lattice symmetry and wide
temperature range. We also do not assume any dependence
of the penetration depth and the coherence length on the
applied field, as was done in earlier studies [22]. In fact
we show that this dependence comes out of our calculations.
The local spatial behaviours of the order parameter and
magnetic field such as the widths of the order parameter
and magnetic field profiles and their variation with arbitrary
magnetic field induction and temperature have been explored
in detail. The changes in the local spatial behaviours are
reflected on the experimentally observable quantities such
as the vortex core radius and the penetration depth of the
magnetic induction. We have also calculated the reversible
magnetization, superconducting current density and small
angle neutron scattering (SANS) form factor which depends
on the local spatial behaviour of order parameters and the
magnetic field. Since our numerical method is valid for
arbitrary vortex lattice symmetry, it enables us to determine
the shear modulus of the vortex lattice which gives a measure
of the strength of the vortex lattice and is of importance
to understand the melting of the flux line lattice at high
temperatures. Though not as pronounced as in the case of the
high-Tc superconducting cuprates in which thermal fluctuation
effects are predominant near Tc, recent studies [25] have shown
that the melting of the vortex lattice is important for MgB2

superconductors also.

The paper is organized as follows, in section 2 we discuss
the theoretical formalism along with the numerical method
involved in the work, section 3 deals with the results obtained
from our calculations and their analysis and finally in section 4
we conclude with suggestions for future work.
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2. Theoretical formalism and numerical calculations

The two-dimensional average GL free energy density
functional for MgB2 superconductor is given as [20, 21],

f =
〈
ασ |ψσ |2 + απ |ψπ |2 + βσ |ψσ |4 + βπ |ψπ |4

+ γ (ψ∗
σψπ + ψσψ

∗
π )+

1

2mσ

|Πψσ |2

+ 1

2mπ

|Πψπ |2 + γ1(�xψσ�
∗
xψ

∗
π +�yψσ�

∗
yψ

∗
π

+ c.c)+ 1

8π
(∇ × A)2

〉
. (1)

On symmetry grounds, various types of interaction in
quartic and gradient terms between the two superconducting
order parameters are possible and have been considered in
the literature [20, 21, 26, 27]. In the above free energy
density functional ψσ and ψπ are the two-order parameter
components, corresponding to the σ and π -bands respectively,
Π = −ih̄∇ − 2e/cA is the momentum operator. A is the
vector potential and is related to the local magnetic field as
B = ∇ × A. The magnetic field is applied along the z-
direction, i.e. B = Bẑ. ασ and απ are temperature dependent
quantities and can be expressed as, αi = α′(T − Ti) where i =
σ, π . The β-coefficients have positive values, γ is the linear
interband coupling parameter while γ1 is the mixed gradient
interband coupling parameter. The most important parameter
of this formalism is the linear interband coupling parameter
γ which gives the coupling between the σ and π -band order
parameter components. For γ < 0, a stable phase with a
phase difference of 0 between the order parameter components
is realized and for γ > 0 a phase difference of π between the
order parameter components is stable. The coupling between
the order parameter components is thus primarily governed
by the linear interband coupling parameter γ . This is unlike
the case of the high-Tc cuprates where due to the tetragonal
symmetry of the material the mixed gradient coupling term is
mainly responsible for the superconducting properties. The GL
free energy density functional (equation (1)) can be rewritten
in the dimensionless form as

f = 〈−ωσ + (1/2)ωσ 2 + αωπ + βπω
2
π

+ 2γ cos(φ)(ωσωπ)
1/2 + gσ + ωσ Q2 + M1gπ

+ M1ωπ Q2 + 2M2[cos(φ)(Q2(ωσωπ)
1/2

+ (∇ωσ )(∇ωπ)/4κ2(ωσωπ )
1/2)+ sin(φ)/2κ

× (Q(∇ωπ)(ωσ /ωπ )1/2 − Q(∇ωσ )(ωπ/ωσ )1/2)]
+ (∇ × Q)2〉 (2)

where, the order parameter components are expressed in
terms of the gauge invariant real quantities as ψσ (x, y) =√
ωσ (x, y) exp[iφσ (x, y)] and ψπ(x, y) = √

ωπ(x, y)
exp[iφπ(x, y)], κ = λ/ξ is the GL parameter, Q = A −
∇φ/κ is the gauge invariant supervelocity of the electrons
and gi = (∇ωi )

2/4κ2ωi with i = σ, π . In this
equation we have expressed the coefficients of the various
terms of equation (1) in terms of reduced units as, α =
απ/|ασ |, βπ = βπ/2βσ , γ = γ /|ασ |, M1 = mσ /mπ ,
M2 = γ1/(1/2mσ ). The local magnetic field is rescaled as

B = B/
√

2Hc in terms of the thermodynamic critical field
Hc, while the order parameter components and the free energy
density are expressed in units of |ασ |/2βσ and |ασ |2/2βσ
respectively. Since the coupling between the order parameter
components is primarily governed by the linear interband
coupling parameter γ , for our calculation we have set the
other coupling parameter, namely the mixed gradient interband
coupling parameter M2, to be equal to zero. For the sake
of completeness we have, however, checked the effect of
the mixed gradient interband coupling parameter M2 on the
various properties of MgB2 and no significant effect has been
observed. Among the five other parameters in the free energy
density functional (equation (2)) namely α, βπ , γ , M1 and
κ , the parameters α and βπ are determined by using the
relations given in [20]. Also from [20] we determine M1 =
K2/K1 ≈ 1.06. For the GL parameter κ , we have used
the experimentally determined value of κ = 6.4 [22, 28].
The only free parameter in the formalism is thus the linear
interband coupling parameter γ which is determined by fitting
the reversible magnetization results obtained by our model
with the corresponding experimental data.

The coupled nonlinear GL equations corresponding to the
free energy density functional (2) are obtained by minimizing
the free energy density functional with respect to the order
parameter components ωs(r), ωd(r) and the supervelocity
Q(r). The coupled nonlinear equations in magnetic induction
and the two order parameters are solved by using a numerically
exact iteration technique with 16 digit accuracy [24].

3. Results and discussions

The solutions of the coupled nonlinear GL equations thus
obtained are then used to study the various properties of MgB2
over the entire range of applied magnetic field and a wide range
of temperature and compared with experiments.

3.1. Vortex lattice structure

The vortex positions are given by R = Rmn = (mx1 +
nx2, ny2) (m, n integer) and K = Kmn = ( 2π

x1 y2
)(my2, nx1 +

mx2). For the triangular lattice, one has x2 = x1/2, y2 =
x1

√
3/2, and for the square lattice x2 = 0, y2 = x1 [24].

We start by determining the dependence of the free energy
density f (x2 = x1/2, y2) on the lattice parameter y2 and
find the value of y2 for which the free energy is minimum.
The value of y2 corresponding to the minimum of free energy
suggests the stable structure of the vortex lattice. For the
MgB2 superconductor we obtain a triangular vortex lattice.
This result agrees with several band structure calculations [29]
and experimental [11] results which suggest a triangular vortex
lattice for MgB2. Figure 1 shows the triangular vortex lattice
structure of MgB2, where we have plotted the contour plots for
the order parameter components ωσ (x, y), ωπ(x, y) and the
magnetic field B(x, y).

3.2. Local spatial behaviours

3.2.1. Order parameters. The important aspect of the
present work is to study the local spatial behaviour of the
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Figure 1. Contour plots for (a) ωσ (x, y), (b) ωπ(x, y) and (c) B(x, y). The parameter values used are απ/|ασ | = 0.66, βπ/2βσ = 0.75,
γ = γ /|ασ | = −0.1, M1 = 1.06, κ = 6.4 and b = B̄/Hc2 = 0.8.

Figure 2. Variation of normalized superconducting order parameter
profiles for different values of (a) the linear interband coupling
parameter γ and (b) the coupling parameter M1. The parameter
b = 0.005 and T/Tσ = 0.3. For (a) M1 = 9.0 and for (b) γ = −0.4.

order parameter components and magnetic field. The widths
of the order parameter and magnetic field profiles, which
we obtain from the local spatial behaviour, correspond to
experimentally observed properties such as the vortex core
radius and penetration depth of the magnetic field respectively.
As has been mentioned above, the magnetic field dependence
of the various properties of this material can be explained by
understanding the magnetic field dependence of the vortex core
radius and penetration depth.

Figure 3. A comparison between the experimental data [22] and the
theoretical results of the magnetic field dependence of the vortex core
radius. The other parameter values are the same as in figure 1. The
inset shows the magnetic field dependence of the relative vortex core
radius of σ - and π-band order parameter components.

Figure 2(a) shows the plots of the σ and π -band order
parameter components ωσ (x, 0) and ωπ(x, 0) normalized to
the saturation value of ωσ (x, 0) for different values of the
linear interband coupling parameter γ . The figure clearly
shows that there is significant difference in the spatial variation
of the magnitude and width of the order parameter components,
with the π -band order parameter component varying spatially
more slowly as compared to that of the σ -band. The
differences in the core size of the two order parameter
components indicate that there are two different length scales,
ξσ and ξπ , over which the order parameter components vary.
This observation is similar to that discussed in [20] where the
single vortex structure is studied in the absence of magnetic
field. From figure 2(a) we can see that for variation of the
coupling parameter γ from −0.6 to −0.05, the magnitude of
the π -band order parameter is reduced by a factor of ∼40
while the corresponding vortex core radius increases by a
factor ∼2. On the other hand, the spatial variation of the σ -
band order remains almost unchanged with variation of the
parameter γ . This difference in the spatial behaviour of the
order parameter components is also seen in their variations
with coupling parameter M1, as shown in figure 2(b). An
interesting feature that can be observed from this figure is
that the size of the vortex core corresponding to the weakly
superconducting π -band order parameter component is larger
than that of the σ -band. This is a characteristic feature
of the two-band superconductors [19]. Figure 3 shows the
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Figure 4. Temperature dependence of the theoretical vortex core
radius for different values of the linear interband coupling parameter
γ . Parameter b = 0.01 and the other parameter values are the same
as in figure 1.

comparison between the analytical result and the experimental
data [22] for the magnetic field dependence of the vortex core
radius of MgB2. In this plot the vortex core radii have been
measured as the FWHM of the order parameter components
along the y-axis. Similar results are obtained for the x-
component also. The combined vortex core size as plotted
is defined as ry = 2rσ y + rπy , which gives the best fit with
the experimental results. The inset of the figure shows the
magnetic field dependence of the relative vortex core size of
the σ - and π -band order parameter components (rπy/rσ y). For
all magnetic field inductions the vortex core size corresponding
to the π -band exceeds that of the σ -band and this behaviour is
more prominent at lower magnetic field regimes.

Figure 4 shows the temperature dependence of the
vortex core radii for the σ - and π -band order parameter
components. The vortex core radius for both the order
parameter components decreases with decrease of temperature.
For any value of the coupling parameter γ the size of the vortex
core corresponding to the π -band order parameter component
always exceeds that of the σ -band. The observation of the
shrinkage of the vortex cores corresponding to both the σ
and π -band order parameter components with temperature in
MgB2 is consistent with previous theoretical works [30, 31]
and has been attributed to the fact that the shrinkage of the
vortex core in the π -band is induced by that in the σ -band
and thus the size of the vortex core corresponding to the π -

Figure 5. Temperature dependence of the theoretical vortex core
radius for different values of the coupling parameter M1. Parameter
b = 0.01 and the other parameter values are the same as in figure 1.

band always exceeds that of the σ -band. Figure 5 shows the
temperature dependence of the vortex core radius for different
values of the parameter M1. In this case also shrinkage of
vortex core radius with decreasing temperature is observed for
all values of the parameter M1. However, the variation of the
σ and π -band vortex core radius with the parameter M1 is
very different. Whereas, for the σ -band the variation is almost
negligible, for the π -band it is more prominent.

3.2.2. Magnetic field. We now study the local spatial
behaviour of the magnetic field profile. The width of the
magnetic field profile gives a measure of the penetration depth
(λ). We study the magnetic field as well as the temperature
dependence of the penetration depth for different values of the
coupling parameters γ and M1.

Figure 6 shows the plot of the calculated magnetic field
dependence of the penetration depth with the experimental
data obtained from superconducting quantum interference
device (SQUID) measurements [14]. The figure also shows
the comparison of our analytical results with the analytical
results obtained using an effective single-order parameter
model [22]. Whereas in [22] it is assumed that the
coherence length and the penetration depth is dependent on the
applied field, we compute the actual dependences analytically,
which are as shown in figures 3 and 6, respectively. It
has been suggested [22] that the results obtained from the
SQUID measurements indicate a penetration depth value of
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Figure 6. A comparison between the theoretical magnetic field
dependence of the penetration depth with the experimental data
obtained from SQUID measurements [14] (closed circles) and the
results obtained from the single-band model [22] (open circles). The
parameter values used for the theoretical calculation are the same as
in figure 1. The inset shows the magnetic field dependence of the
inverse square of the penetration depth.

λab ≈ 900 Å while the theoretically calculated value for
MgB2 in the clean limit is λab ≈ 400 Å [32]. This
theoretically calculated value is in accordance with the
isotropic Hc1 observed previously [33] and also with the
SANS measurement [34]. The result obtained from the
single gap model involving field dependent coherence length
and penetration depth suggests a variation in the penetration
depth value from λab ≈ 450 to 700 Å for low to high
applied magnetic field. With the increase in the applied
magnetic field the penetration depth increases due to the
decrease in the superfluid density arising as a result of
the destruction of superconductivity in the π -bands. It is
thus evident that in the case of MgB2 superconductor the
determination of the penetration depth from the derivative
of the reversible magnetization data, as has been carried
out in [14], leads to a gross overestimation of λab if the
magnetic field dependence of coherence length and penetration
depth is not taken into account. In our present work instead
of determining the penetration depth from the derivative of
reversible magnetization we have calculated it directly from
the magnetic field profile. As can be seen from the figure
the results obtained by our theoretical calculation indicate a
penetration depth of λab < 900 Å. In the higher magnetic
field regime our results are in accordance with those obtained
by Klein et al [22], while the discrepancy increases with the
decrease in the magnetic field induction due to the enhanced
dominance of the three-dimensional π -band in the lower
magnetic field regime. The inset of figure 6 shows that
the inverse square of the penetration depth decreases with
increasing field and almost saturates at higher field. This is
in contrast to the result of linear dependence of the penetration
depth on the magnetic field as reported earlier [22].

Figure 7 shows the comparison of the analytical
temperature dependence of the penetration depth with the
experimental data of MgB2 [32]. The behaviour of the
theoretical results and experimental data is qualitatively the

Figure 7. A comparison between the theoretical and experimental
data [32] of the temperature dependence of the penetration depth.
Parameter b = 0.003 and other parameter values are the same as in
figure 1.

Figure 8. Temperature dependence of the theoretical penetration
depth for different values of the coupling parameter M1. Parameter
b = 0.01 and other parameter values are the same as in figure 1.

same. At low temperature the theoretical result is limited
by the limitation of the applicability of the GL theory. The
temperature dependence of the penetration depth of the system,
however, shows a great effect with the change in the parameter
M1, as can be seen from figure 8. With increase in the
gradient coupling parameter M1 there is slight increase in the
penetration depth at all temperatures.

Figure 9 shows the plot of the magnetic form factor
computed analytically with that obtained from the SANS
measurements. The magnetic field inductions are measured in
terms of the upper critical field corresponding to the dominant
σ -band order parameter component (i.e. b = B̄/Hc2, where
Hc2 is the upper critical magnetic field corresponding to the σ -
band order parameter component). Over a wide range of the
applied magnetic field regime the analytical results show very
good agreement with the experimental data. The disagreement
in the low magnetic field regime is expected as our two-
dimensional model is not suitable for low applied field due to
the increased dominance of the three-dimensional π -band in
that regime.

6
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Figure 9. A comparison between the theoretical magnetic form
factor and experimental data [22]. The other parameter values are the
same as in figure 1.

3.3. Reversible magnetization

Earlier theoretical models [23], which used an effective
single-order parameter GL theory to explain the reversible
magnetization of MgB2, have proved to be inadequate. The
determination of the penetration depth of MgB2 using the
derivative of the reversible magnetization also leads to a gross
overestimation of its value [14, 22]. We provide an accurate
computation of the reversible magnetization. The reversible
magnetization of the system is defined as M = B̄ − H ,
where the equilibrium applied magnetic field H is given by
H = 4π(∂ f/∂ B̄). Determination of H requires a numerical
derivative of the free energy density functional f which is
difficult to calculate numerically and is a possible source of
error in the earlier reported analytical results of the reversible
magnetization. A more convenient and accurate way is to use
the virial theorem earlier developed by the authors for the two-
order parameter GL theory [24], and the same approach has
been used here to compute the reversible magnetization.

Using virial theorem the equilibrium applied magnetic
field H for MgB2 can be written as [24],

2H B̄ = 〈ωσ − αωπ − ω2
σ − 2βπω2

π − 2γ cos(φ)(ωσωπ)1/2

+ 2B2〉. (3)

Using this expression and the relation M = B̄ − H
the reversible magnetization can be calculated for various
values of the coupling parameter γ . The result is shown
in figure 10. The magnitude of the reversible magnetization
shows marked changes with change in the parameter γ though
the behaviour remains qualitatively the same. Figure 11
shows a comparison between the experimental data [28] of
the reversible magnetization and our analytical results. The
match between the two is excellent. From the best fit of the
analytical reversible magnetization data with the experiment
we obtain the value of the only free parameter in our model
γ = −0.1. We have used this value of the parameter γ = −0.1
for all our analytical calculations. A comparison between
the experimental data [28] and the theoretically computed
temperature dependence of the reversible magnetization of the

Figure 10. Reversible magnetization versus applied field plot for
different values of the linear interband coupling parameter γ . The
other parameter values are the same as in figure 1.

Figure 11. A comparison between the theoretical reversible
magnetization and experimental data for MgB2 [28]. The other
parameter values are the same as in figure 1.

system for the applied magnetic field range 0.1 T � H � 2.0 T
is presented in figure 12. The fitting between the theoretical
and experimental data has been carried out using the Clem and
Hao method [35]. The curves systematically shift towards the
left with the increase in the applied magnetic field. Similar
shifting in the reversible magnetization curves has also been
observed in the case of conventional [36] as well as layered
superconductors [37]. The match between the theoretical and
experimental results is very good.

3.4. Current density

One of the principle reasons that has made MgB2 one of the
most studied superconducting materials of recent times is its
high current carrying capacity in spite of its comparatively
simple structure. The current density is related to the
penetration depth as |jc(T )| ≈ 1/λ2(T ) [38]. Therefore,
the current density also depends crucially on the details of
the spatial behaviour of the order parameter components
and the magnetic induction. Figure 13 shows the magnetic
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Figure 12. A comparison between the theoretical temperature
dependence of the reversible magnetization and experimental
data [28] for MgB2. The other parameter values are the same as in
figure 1.

Figure 13. Variation of the theoretical supercurrent density with
magnetic field induction for different temperatures. Parameter values
used are the same as in figure 1.

field dependence of the average current density at different
temperatures. It can be seen that the magnitude of the current
density is higher at lower temperature and at lower temperature
the current can be carried over a wider range of applied
magnetic field. Our analytical current density profile can be
compared to the one obtained experimentally by Nishida et al
[39]. Though the shape of the profile is the same in both the
cases, an exact match is not expected since the experimental
data correspond to MgB2 thin films while our theoretical
results correspond to bulk material. The experimental results
also show a drop in the current density at low magnetic field,
indicating that the sample is almost pin free as compared to
cuprates [40]. Figure 14 shows the temperature dependence of
the average current density for different values of the interband
coupling parameter γ . The figure shows significant variation
in the current density with the magnitude of the current
density decreasing with increasing value of γ . This is due
to the fact that the penetration depth increases with increasing

Figure 14. Temperature dependence of the theoretical
superconducting current density for different values of the linear
interband coupling parameter γ . Parameter b = 0.01 and the other
parameter values are the same as in figure 1.

Figure 15. Comparison between the theoretical temperature
dependence of the supercurrent density with the experimental data
for MgB2 [41]. Parameter b = 0.003 and the other parameter values
are the same as in figure 1.

interband coupling parameter γ which is also observed from
our analytical calculation of the penetration depth. Figure 15
shows the best fit of the analytical result computed at very low
applied field (H ≈ 0.0084 T) with the experimental data [41].
The match between the theoretical and experimental results is
quite good and the discrepancy can be attributed to the fact
that the theoretical calculation is carried out at low magnetic
field where the two-dimensional theoretical model ceases to
be accurate due to the increasing contribution of the three-
dimensional π -band to superconductivity, as mentioned above.

3.5. Shear modulus (c66) of the vortex lattice

The shear modulus (c66) of the vortex lattice gives a measure
of the stability of the vortex lattice against the melting of
the flux line lattice due to thermal fluctuations. Even though
the effect of thermal fluctuation is not so prominent in MgB2
superconductors as in cuprates, recent studies have shown that
the phenomenon of vortex lattice melting is still important for
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Figure 16. Magnetic field dependence of the shear modulus (c66) of
the vortex lattice corresponding to different values of the linear
interband coupling parameter γ . The other parameter values are the
same as in figure 1.

MgB2 [25]. The shear modulus of the vortex lattice can be
defined as the difference in the free energy density between a
rectangular and a triangular lattice

c66 = 2π2[y2(γ )/x1]2[ f (x2 = 0, y2(γ ))

− f (x2 = x1/2, y2(γ ))] (4)

where x1, x2 and y2 are vortex lattice parameters which
determine the shape of the vortex lattice. The parameter y2(γ )

thus determines the interband coupling parameter dependence
on the shape of the vortex lattice.

Figure 16 shows the magnetic field dependence of the
shear modulus (c66) of the vortex lattice for different values of
the linear interband coupling parameter γ . For any value of the
coupling parameter γ , the shear modulus of the vortex lattice
increases, reaches a maximum and subsequently decreases
with the increase in the magnetic field induction b. A positive
value of the shear modulus of the vortex lattice (c66) indicates
that the corresponding symmetry of the vortex lattice is stable.
It can be seen from the figure that though the behaviour remains
qualitatively the same for all values of the linear interband
coupling parameter γ , the magnitude varies significantly,
indicating the effect of the interband coupling parameter γ . A
decrease in the coupling parameter γ enhances the magnitude
of the shear modulus (c66) of the vortex lattice. In other words,
an enhanced interband coupling leads to the softening of the
vortex lattice. The observation is consistent with the variation
of penetration depth of the system with the coupling parameter
γ as obtained from our calculations. A careful observation of
the variation of the width of the magnetic field profile B(x, 0)
for different values of the coupling parameters γ suggests a
dependence of the form 1/λ2 ≈ c66.

Figure 17 shows the temperature dependence of the shear
modulus of the vortex lattice of MgB2 superconductor. It can
be seen from the figure that for a given value of magnetic
field induction b the shear modulus (c66) of the vortex lattice
decreases with the increasing temperature indicating that the
melting of the vortex lattice is favoured at high temperature.

Figure 17. Temperature dependence of the shear modulus (c66) of
the vortex lattice for different values of the linear interband coupling
parameter γ . Parameter b = 0.3 and the other parameter values are
the same as in figure 1.

The observation is in accordance with the experimental
observations of melting of the vortex lattice of MgB2 [25].
Also, a higher linear interband coupling results in a smaller
shear modulus of the vortex lattice, i.e. a softening of the vortex
lattice is favoured in this case. The observation is again in
accordance with the current density behaviour observed from
figure 14, which suggests that a higher interband coupling
which favours the melting of the vortex lattice indeed supports
a smaller current density.

4. Summary and conclusions

We have studied the spatial distribution of the order
parameters and magnetic field induction and their variation
with temperature and applied magnetic field. The study has
been motivated by the experimental observations of anomalous
magnetic field dependence of the various properties of the
MgB2 superconductor. We have used a two-order parameter
GL theory to take into account the two-band nature of
MgB2. The nonlinear GL equations are solved using a
numerically exact iteration method over the entire range of
applied magnetic field, wide range of temperature and arbitrary
vortex lattice symmetry. The spatial distribution of the order
parameters reveals two different spatial length scales for the
two bands, in agreement with the recent STM experiments on
MgB2. This provides an interesting vortex core structure, the
π -band having a larger vortex core size as compared to that
of the σ -band. The effect of the two spatial length scales
and the linear interband coupling parameter γ significantly
affects the properties of MgB2. On the contrary, there is
very little effect of the mixed gradient coupling parameter on
the properties of MgB2. Our computation of the magnetic
field dependence of the penetration depth directly from the
spatial profile of the magnetic induction provides better results
than the one determined by using the derivative of reversible
magnetization [14] which leads to an overestimation of λab.
This is important since the penetration depth is related to
several other properties of the system. This interesting

9



J. Phys.: Condens. Matter 22 (2010) 205701 M Karmakar and B Dey

observation suggests that, unlike the case of tetragonal high-
Tc cuprates in which the mixed gradient coupling term plays
a decisive role, for MgB2 it is the linear interband coupling
parameter γ that is important. We have shown that both
the vortex core radius and the penetration depth are applied
magnetic field dependent and this is due to the change in
supercarrier density as superconductivity in the π -band is
suppressed by the applied field. The calculated vortex core
radius and the magnetic form factor which depends on the
spatial behaviour of the order parameters and the magnetic
field distribution show good agreement with the experiment.
The vortex lattice configuration for MgB2 as obtained from
our isotropic two-order parameter GL model is triangular,
an observation which is supported by previous experimental
results [29, 11]. We have, however, not observed the 30◦
orientation of the vortex lattice, as observed in some of the
recent neutron scattering experiments [11]. Such anisotropy of
the vortex lattice can be attributed to the anisotropy of the σ -
and π -bands which favours different vortex lattice orientations.
At low fields the vortex lattice orientations will be dominated
by screening currents on the π -band while at higher fields it
is the σ -band which determines the vortex lattice structure.
Theoretically such an orientation in the vortex lattice can
be observed in the case where we incorporate higher-order
gradient terms in our free energy density functional [20]. The
calculated reversible magnetization shows excellent agreement
with the experimental data over the entire range of the applied
field. For accurate computation of the reversible magnetization
we made use of the virial theorem, which avoids taking the
numerical derivative of the free energy density functional
which gives inaccurate results. The calculated superconducting
current density and its dependence on applied magnetic field
and temperature shows good match with the experimental
results. The calculated variation of the current density and the
shear modulus of the vortex lattice with the linear interband
coupling parameter γ are consistent with the melting of the
flux line lattice. Our results show that in the case of a softer
vortex lattice, which favours its melting, the current carrying
capacity of the material is indeed reduced.

An interesting problem would be to extend the model by
taking into consideration the three-dimensional nature of the
system to take care of the lower magnetic field regime. This
can be done by considering the thin film geometry of the
superconductor [42] and study in this direction is in progress.
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